Overpersistence Bias in Individual Income Expectations and its Aggregate Implications

Filip Rozsypal
Danmarks Nationalbank

Kathrin Schlafmann
IIES Stockholm
CBS Copenhagen
CEPR

09 April 2018

Motivation

Households make decisions under uncertainty
\rightarrow income risk is one of the most important sources of risk
Income expectations important for

- consumption vs savings
- durable vs non-durable consumption

Motivation

Households make decisions under uncertainty
\rightarrow income risk is one of the most important sources of risk
Income expectations important for

- consumption vs savings
- durable vs non-durable consumption

This paper:

(1) What are typical features of household income expectations?
(2) How do these features affect consumption/savings choices? Aggregate Implications?

This Paper

1) household income expectations in micro data:

- construct expectation errors on individual household level
- systematic bias: current income predicts expectation error households overestimate persistence

This Paper

1) household income expectations in micro data:

- construct expectation errors on individual household level
- systematic bias: current income predicts expectation error households overestimate persistence

2) effects of household income expectations on consumption choices:

- partial equilibrium model with durable and non-durable consumption
- allowing for biased income expectations
\Rightarrow overpersistence bias: model can fit joint distribution of income and liquid assets!

This Paper

1) household income expectations in micro data:

- construct expectation errors on individual household level
- systematic bias: current income predicts expectation error households overestimate persistence

2) effects of household income expectations on consumption choices:

- partial equilibrium model with durable and non-durable consumption
- allowing for biased income expectations
\Rightarrow overpersistence bias: model can fit joint distribution of income and liquid assets!

3) aggregate implications:

- MPC of low income households lower under biased expectations
\Rightarrow fiscal transfers less effective!

Roadmap

1) Household Expectations in Micro Data
(a) Data \& Interview time structure
(b) Expectation Errors in the Cross-Section: Overpersistence
(c) Expectation about Aggregates
2) Model
(a) Income process and Expectations errors
(b) Consumption
3) Results
(a) Distributions by Income Group
(b) MPC and effectiveness of transfer policies
(c) Alternative Borrowing Constraints

Data

Michigan Survey of Consumers

Survey characteristics:

- 500 observations each month (micro data since 1987M7)
- content: household characteristics, expectations about unemployment, inflation, interest rates, purchasing conditions and individual income expectations
- mix of repeated cross-section and short panel:
- short panel dimension: $1 / 3$ re-interviewed after 6 months

Michigan Survey of Consumers

Survey characteristics:

- 500 observations each month (micro data since 1987M7)
- content: household characteristics, expectations about unemployment, inflation, interest rates, purchasing conditions and individual income expectations
- mix of repeated cross-section and short panel:
- short panel dimension: $1 / 3$ re-interviewed after 6 months

Forecast Errors:

$$
\psi_{i, t}=\hat{g}_{i, t+1 \mid t}-g_{i, t+1}
$$

where

$$
g_{i, t+1}=Y_{i, t+1} / Y_{i, t}
$$

Interview time structure: Ideal

Data

Interview time structure: Ideal

 Data- First interview: January 2002

Interview time structure: Ideal

- First interview: January 2002

Interview time structure: Ideal

- First interview: January 2002

Interview time structure: Ideal

- First interview: January 2002

Interview time structure: Ideal

- First interview: January 2002
- Perfect overlap of expected and realised g :

$$
\psi_{i, t}=\hat{g}_{i, t+1 \mid t}-g_{i, t+1}
$$

Interview time structure

- Aim: compare expectation with realization
- Challenge:
- 6 months between interviews
- time structure of expectations vs realizations
- expectations: expected income growth in next 12 months
- income realization: total household income in last calendar year

Interview time structure: Reality

Data
Two problems:

First interview: January 2002

Interview time structure: Reality

Data
Two problems:

- re-interviews after 6 months

First interview: January 2002

Interview time structure: Reality

Data
Two problems:

- re-interviews after 6 months
- past income in calendar year

First interview: January 2002

Interview time structure: Reality

Data
Two problems:

- re-interviews after 6 months
- past income in calendar year

First interview: February 2002

Interview time structure: Reality

Data
Two problems:

- re-interviews after 6 months
- past income in calendar year

First interview: March 2002

Interview time structure: Reality

Two problems:

- re-interviews after 6 months
- past income in calendar year

First interview: April 2002

Interview time structure: Reality

Two problems:

- re-interviews after 6 months
- past income in calendar year

First interview: May 2002

Interview time structure: Reality

Data
Two problems:

- re-interviews after 6 months
- past income in calendar year

First interview: June 2002

Interview time structure: Reality

Data
Two problems:

- re-interviews after 6 months
- past income in calendar year

First interview: July 2002

Interview time structure: Reality

Data
Two problems:

- re-interviews after 6 months
- past income in calendar year

First interview: July 2002
(partial) overlap! ... © (results coming)

Interview time structure: Reality

Data
Two problems:

- re-interviews after 6 months
- past income in calendar year

First interview: December 2002

Reality strikes back! ... ©

Interview time structure: Imputation

Data
Use other people to impute missing income information First interview in second half of year \rightarrow two years of income data

Interview time structure: Imputation

Data

Use other people to impute missing income information First interview in second half of year \rightarrow two years of income data

Interview time structure: Imputation

Data
Use other people to impute missing income information First interview in second half of year \rightarrow two years of income data

Interview time structure: Imputation

Use other people to impute missing income information
First interview in second half of year \rightarrow two years of income data
Estimate

$$
\hat{Y}_{i, t+1}=f\left(Y_{i, t}, \Gamma_{i}\right)
$$

Interview time structure: Imputation

Use other people to impute missing income information
First interview in second half of year \rightarrow two years of income data
Estimate

$$
\hat{Y}_{i, t+1}=f\left(Y_{i, t}, \Gamma_{i}\right)
$$

Use this to impute income realizations:

Interview time structure: Imputation

Use other people to impute missing income information
First interview in second half of year \rightarrow two years of income data
Estimate

$$
\hat{Y}_{i, t+1}=f\left(Y_{i, t}, \Gamma_{i}\right)
$$

Use this to impute income realizations:

- Best case: (first interview in) January - perfect overlap

Interview time structure: Imputation

Use other people to impute missing income information
First interview in second half of year \rightarrow two years of income data
Estimate

$$
\hat{Y}_{i, t+1}=f\left(Y_{i, t}, \Gamma_{i}\right)
$$

Use this to impute income realizations:

- Best case: January - perfect overlap
- Worst case: June - 7/12 overlapping

Interview time structure: Robustness

Specifications:

- baseline: realizations imputed, all months

$$
\begin{aligned}
\rightarrow \text { advantage: } & \text { - increases overlap } \\
& \text { - maximizes observations }
\end{aligned}
$$

- robustness:
- July only, directly reported data: no imputation
- January only, imputed: perfect overlap

Forecast Errors in Real Income Growth

Figure: Mean forecast error

Forecast Errors in Real Income Growth

Figure: Mean forecast error by income

observation: - low income households too pessimistic

- high income households too optimistic

Forecast Errors on Observables

	(1) real	(2) real	(3) real	(4) nominal	(5) inflation
Income Quintile					
1 (low)	$-0.052^{* * *}$	-0.046 **	$-0.075^{* * *}$	$-0.049^{* * *}$	0.004***
	(0.006)	(0.018)	(0.021)	(0.007)	(0.000)
2	$-0.018^{* *}$	-0.013	-0.038*	$-0.016^{* * *}$	0.002***
	(0.006)	(0.017)	(0.020)	(0.006)	(0.000)
4	0.019***	0.026*	0.025	0.018***	-0.002***
	(0.005)	(0.013)	(0.016)	(0.005)	(0.000)
5 (high)	0.035***	0.046***	0.067***	0.032***	$-0.004^{* * *}$
	(0.006)	(0.015)	(0.017)	(0.006)	(0.000)
Education (0.00)					
no high school	0.014	0.015	0.000	0.019	0.002**
	(0.013)	(0.029)	(0.036)	(0.013)	(0.001)
college	$-0.014^{* * *}$	$-0.024 * *$	$-0.032^{* *}$	$-0.017^{* * *}$	$-0.003 * * *$
	(0.004)	(0.012)	(0.013)	(0.004)	(0.000)
Age					
age	$-0.004^{* * *}$	-0.003	-0.006	$-0.004^{* * *}$	0.000***
	(0.001)	(0.003)	(0.004)	(0.002)	(0.000)
age \times age	0.000**	0.000	0.000	0.000*	$-0.000 * * *$
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Sample Imputation Observations	MAIN	JAN	JULY	MAIN	INF
	yes	yes	no	yes	no
	58369	6973	2805	58369	88017

* $p<0.1$, ** $p<0.05$, *** $p<0.01$. Standard errors in parentheses.
additional controls: ethnic background, number of adults, gender, marriage status, region, month, constant

Forecast Errors on Observables

	(1) real	(2) real	(3) real	(4) nominal	(5) inflation
Income Quintile					
1 (low)	$-0.052^{* * *}$	$-0.046^{* *}$	$-0.075^{* * *}$	-0.049***	0.004***
	(0.006)	(0.018)	(0.021)	(0.007)	(0.000)
2	$-0.018^{* * *}$	-0.013	-0.038^{*}	$-0.016^{* * *}$	$0.002{ }^{* * *}$
	(0.006)	(0.017)	(0.020)	(0.006)	(0.000)
4	0.019***	0.026*	0.025	0.018***	$-0.002^{* * *}$
	(0.005)	(0.013)	(0.016)	(0.005)	(0.000)
5 (high)	$0.035 * * *$	0.046 ***	$0.067 * * *$	$0.032^{* * *}$	$-0.004^{* * *}$
	(0.006)	(0.015)	(0.017)	(0.006)	(0.000)
Education					
no high school	0.014	0.015	0.000	0.019	$0.002 * *$
	(0.013)	(0.029)	(0.036)	(0.013)	(0.001)
college	$-0.014^{* * *}$	$-0.024 * *$	$-0.032^{* *}$	$-0.017^{* * *}$	$-0.003{ }^{* * *}$
	(0.004)	(0.012)	(0.013)	(0.004)	(0.000)
Age					
age	-0.004***	-0.003	-0.006	$-0.004^{* * *}$	$0.000^{* *}$
	(0.001)	(0.003)	(0.004)	(0.002)	(0.000)
age \times age	0.000**	0.000	0.000	0.000*	$-0.000{ }^{* * *}$
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Sample Imputation Observations	MAIN	JAN	JULY	MAIN	INF
	yes	yes	no	yes	no
	58369	6973	2805	58369	88017

* $p<0.1$, ** $p<0.05$, *** $p<0.01$. Standard errors in parentheses.
additional controls: ethnic background, number of adults, gender, marriage status, region, month, constant

Forecast Errors on Observables

	(1) real	(2) real	(3) real	(4) nominal	(5) inflation
Income Quintile					
1 (low)	$-0.052^{* * *}$	$-0.046{ }^{* *}$	$-0.075^{* * *}$	-0.049***	0.004***
	(0.006)	(0.018)	(0.021)	(0.007)	(0.000)
2	$-0.018^{* * *}$	-0.013	-0.038*	$-0.016^{* * *}$	0.002***
	(0.006)	(0.017)	(0.020)	(0.006)	(0.000)
4	0.019***	0.026*	0.025	0.018***	-0.002***
	(0.005)	(0.013)	(0.016)	(0.005)	(0.000)
5 (high)	0.035***	$0.046^{* * *}$	$0^{0.067 * * *}$	0.032***	$-0.004^{* * *}$
	(0.006)	(0.015)	(0.017)	(0.006)	(0.000)
Education 0 (0.017)					
no high school	0.014	0.015	0.000	0.019	0.002**
	(0.013)	(0.029)	(0.036)	(0.013)	(0.001)
college	$-0.014^{* * *}$	$-0.024^{* *}$	$-0.032^{* *}$	$-0.017^{* * *}$	$-0.003 * * *$
	(0.004)	(0.012)	(0.013)	(0.004)	(0.000)
Age					
age	$-0.004^{* * *}$	-0.003	-0.006	$-0.004^{* * *}$	0.000***
	(0.001)	(0.003)	(0.004)	(0.002)	(0.000)
age \times age	0.000**	0.000	0.000	0.000*	$-0.000 * * *$
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Sample Imputation Observations	MAIN	JAN	JULY	MAIN	INF
	yes	yes	no	yes	no
	58369	6973	2805	58369	88017

${ }^{*} p<0.1,{ }^{* *} p<0.05,{ }^{* * *} p<0.01$. Standard errors in parentheses.
additional controls: ethnic background, number of adults, gender, marriage status, region, month, constant

Forecast Errors on Observables

	(1) real	(2) real	(3) real	(4) nominal	(5) inflation
Income Quintile					
1 (low)	$\begin{aligned} & -0.052^{* * *} \\ & (0.006) \end{aligned}$	$\begin{gathered} -0.046^{* *} \\ (0.018) \end{gathered}$	$\begin{gathered} -0.075^{* * *} \\ (0.021) \end{gathered}$	$\begin{gathered} -0.049^{* * *} \\ (0.007) \end{gathered}$	$\begin{aligned} & 0.004^{* * *} \\ & (0.000) \end{aligned}$
2	$\begin{gathered} -0.018^{* * *} \\ (0.006) \end{gathered}$	$\begin{gathered} -0.013 \\ (0.017) \end{gathered}$	$\begin{array}{r} -0.038^{*} \\ (0.020) \end{array}$	$\begin{gathered} -0.016^{* * *} \\ (0.006) \end{gathered}$	$\begin{aligned} & 0.002^{* * *} \\ & (0.000) \end{aligned}$
4	$\begin{aligned} & 0.019^{* * *} \\ & (0.005) \end{aligned}$	$\begin{gathered} 0.026^{*} \\ (0.013) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.016) \end{gathered}$	$\begin{aligned} & 0.018^{* * *} \\ & (0.005) \end{aligned}$	$\begin{gathered} -0.002^{* * *} \\ (0.000) \end{gathered}$
5 (high)	$\begin{aligned} & 0.035^{\star * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.046^{* * *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & 0.067^{* * *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.032^{* * *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & -0.004^{* * *} \\ & (0.000) \end{aligned}$
Education					
no high school	0.014	0.015	0.000	0.019	0.002**
	(0.013)	(0.029)	(0.036)	(0.013)	(0.001)
college	$-0.014^{\star * *}$	$-0.024^{\star *}$	$-0.032^{* *}$	$-0.017^{* * *}$	$-0.003^{* * *}$
	(0.004)	(0.012)	(0.013)	(0.004)	(0.000)
Age					
age	$-0.004 * * *$	-0.003	-0.006	$-0.004^{* *}$	0.000***
	(0.001)	(0.003)	(0.004)	(0.002)	(0.000)
age \times age	$\begin{aligned} & 0.000^{* *} \\ & (0.000) \end{aligned}$	0.000 (0.000)	0.000 (0.000)	$\begin{gathered} 0.000^{*} \\ (0.000) \end{gathered}$	$\begin{aligned} & -0.000^{* * *} \\ & (0.000) \end{aligned}$
Sample	MAIN	JAN	JULY	MAIN	INF
Imputation	yes	yes	no	yes	no
Observations	58369	6973	2805	58369	88017

${ }^{*} p<0.1$, ** $p<0.05$, *** $p<0.01$. Standard errors in parentheses.
additional controls: ethnic background, number of adults, gender, marriage status, region, month, constant

Forecast Errors on Observables

	(1) real	(2) real	(3) real	(4) nominal	(5) inflation
Income Quintile					
1 (low)	$-0.052^{* * *}$	-0.046 **	$-0.075^{* * *}$	$-0.049^{* * *}$	0.004***
	(0.006)	(0.018)	(0.021)	(0.007)	(0.000)
2	$-0.018^{* *}$	-0.013	-0.038*	$-0.016^{* * *}$	0.002***
	(0.006)	(0.017)	(0.020)	(0.006)	(0.000)
4	0.019***	0.026*	0.025	0.018***	-0.002***
	(0.005)	(0.013)	(0.016)	(0.005)	(0.000)
5 (high)	0.035***	0.046***	0.067***	0.032***	$-0.004^{* * *}$
	(0.006)	(0.015)	(0.017)	(0.006)	(0.000)
Education (0.00)					
no high school	0.014	0.015	0.000	0.019	0.002**
	(0.013)	(0.029)	(0.036)	(0.013)	(0.001)
college	$-0.014^{* * *}$	$-0.024 * *$	$-0.032^{* *}$	$-0.017^{* * *}$	$-0.003 * * *$
	(0.004)	(0.012)	(0.013)	(0.004)	(0.000)
Age					
age	$-0.004^{* * *}$	-0.003	-0.006	$-0.004^{* * *}$	0.000***
	(0.001)	(0.003)	(0.004)	(0.002)	(0.000)
age \times age	0.000**	0.000	0.000	0.000*	$-0.000 * * *$
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
Sample Imputation Observations	MAIN	JAN	JULY	MAIN	INF
	yes	yes	no	yes	no
	58369	6973	2805	58369	88017

* $p<0.1$, ** $p<0.05$, *** $p<0.01$. Standard errors in parentheses.
additional controls: ethnic background, number of adults, gender, marriage status, region, month, constant

Forecast Errors in Real Income Growth

Figure: Mean forecast errors by income

\rightarrow robust to controlling for household characteristics!

Overpersistence Bias

Mechanism

Assumption

- Individual income Y has transitory (T) and persistent (P) component ${ }^{1}$
- Households overestimate persistence in P

Theorem

(a) $\exists!\bar{P}$:

$$
E\left[\log \left(Y_{i t+1 \mid t}\right)-\log \left(Y_{i t+1}\right) \mid P_{i t}>\bar{P}\right]>0
$$

and vice versa for $P_{i t}<\bar{P}$
(b) let $\Delta_{i t} \equiv P_{i t}-\bar{P}$, then

$$
\frac{\partial E\left[\log \left(Y_{i t+1 \mid t}\right)-\log \left(Y_{i t+1}\right) \mid \Delta_{i t}\right]}{\partial \Delta_{i t}}>0
$$

[^0]
Overpersistence Bias

Intuition

Overpersistence Bias

Intuition
Persistent shocks decay over time example $\operatorname{AR}(1): P_{t+1}=\rho P_{t}+\varepsilon_{t+1}$

Overpersistence Bias

Intuition
Persistent shocks decay over time more persistence (larger ρ) \rightarrow slower decay

Overpersistence Bias

Intuition
Persistent shocks decay over time more persistence (larger ρ) \rightarrow slower decay \Rightarrow good shocks \rightarrow optimism

Overpersistence Bias

Persistent shocks decay over time more persistence (larger ρ) \rightarrow slower decay \Rightarrow bad shocks \rightarrow pessimism

Overpersistence Bias

Intuition
Persistent shocks decay over time more persistence (larger ρ) \rightarrow slower decay \Rightarrow one parameter \rightarrow heterogenous error sign

Forecast Errors in Aggregates

Figure: Forecast errors in inflation by income

- people overestimate inflation across the whole income distribution
- similar to unemployment expectations = too pessimistic across whole income distribution

Summary Empirical Findings

(1) Overpersistence Bias in Income Expectations:

- low income households too pessimistic
- high income households too optimistic
(2) Aggregate Pessimism:
all income groups too pessimistic about aggregates

Modeling income and expectations

Income process

Model

$$
Y_{i t}=Z_{t} \cdot P_{i t} \cdot T_{i t}
$$

Income process

Model

$$
Y_{i t}=Z_{t} \cdot P_{i t} \cdot T_{i t}
$$

- transitory shock:

$$
T_{i t} \sim \log N\left(-\frac{\sigma_{T}^{2}}{2}, \sigma_{T}^{2}\right)
$$

Income process

Model

$$
Y_{i t}=Z_{t} \cdot P_{i t} \cdot T_{i t}
$$

- persistent idiosyncratic shock:

$$
\log P_{i t}=\rho \log P_{i t-1}+\epsilon_{i t}^{P}, \quad \epsilon_{i t}^{P} \sim N\left(0, \sigma_{P}^{2}\right)
$$

Income process

Model

$$
Y_{i t}=Z_{t} \cdot P_{i t} \cdot T_{i t}
$$

- persistent idiosyncratic shock:

$$
\log P_{i t}=\rho \log P_{i t-1}+\epsilon_{i t}^{P}, \quad \epsilon_{i t}^{P} \sim N\left(0, \sigma_{P}^{2}\right)
$$

Overpersistence Bias:

$$
\log P_{i t}=\hat{\rho} \log P_{i t-1}+\epsilon_{i t}^{P}, \quad \epsilon_{i t}^{P} \sim N\left(0, \sigma_{P}^{2}\right)
$$

\rightarrow find $\hat{\rho}$ to match the observed forecasting errors

Income process

Model

$$
Y_{i t}=Z_{t} \cdot P_{i t} \cdot T_{i t}
$$

- persistent aggregate state:

$$
\mathbb{Z}=\left[\begin{array}{c}
Z^{h} \\
Z^{\prime}
\end{array}\right], \quad \Pi_{Z}=\left[\begin{array}{cc}
\pi_{11} & 1-\pi_{11} \\
1-\pi_{22} & \pi_{22}
\end{array}\right]
$$

Income process

Model

$$
Y_{i t}=Z_{t} \cdot P_{i t} \cdot T_{i t}
$$

- persistent aggregate state:

$$
\mathbb{Z}=\left[\begin{array}{c}
Z^{h} \\
Z^{\prime}
\end{array}\right], \quad \quad \Pi_{Z}=\left[\begin{array}{cc}
\pi_{11} & 1-\pi_{11} \\
1-\pi_{22} & \pi_{22}
\end{array}\right]
$$

Aggregate Pessimism:

$$
\hat{Z}_{t+1 \mid t}=\mu \cdot \mathrm{E} Z_{t+1}=\mu \cdot \Pi_{Z}\left(Z_{t}\right) \mathbb{Z}
$$

Parameters of the income process

Calibration

Parameter		Value
persistence of idiosyncratic income process	ρ	0.9774
std dev of idiosyncratic persistent shocks	σ_{P}	0.0424
std dev of idiosyncratic transitory shocks	σ_{V}	0.1
high aggregate income state	Z^{h}	1.0040
low aggregate income state	Z^{\prime}	0.9790
prob. of entering recession	$1-\pi_{11}$	6.85%
prob. of leaving recession	$1-\pi_{22}$	36.04%

$\rho, \sigma_{P}, \sigma_{T}$: Storesletten et al. (2004); Berger and Vavra (2015)
Z : NBER recessions vs booms frequencies and average HPF GDP deviation

Replicating forecasting errors

Model
Overpersistence bias (fitted): $\quad \hat{\rho}=0.9831$, (true $\rho=0.9774$)
Aggregate pessimism (fitted): $\quad \mu=0.9778$

Table: Mean expectation errors in income growth

	data	model
income quintile 1	-0.072	-0.068
income quintile 2	-0.037	-0.040
income quintile 3	-0.019	-0.021
income quintile 4	-0.000	-0.004
income quintile 5	0.016	0.020

Modeling consumption

Overview

- partial equilibrium analysis, infinite horizon
- household obtains utility from two goods:
- non-durable consumption
- durable good
- household can invest in two assets:
- durable good: adjustment costs \& depreciation
- liquid asset: earns risk-free interest
\rightarrow borrowing possible at higher interest rate
- only source of risk: exogenous income

Household Optimization Problem

Model

$$
\max _{\left\{c_{t}\right\}_{t=0}^{\infty},\left\{d_{t}\right\}_{t=0}^{\infty},\left\{s_{t}\right\}_{t=0}^{\infty}} \mathrm{E} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, d_{t}\right)
$$

s.t. $\quad c_{t}+d_{t}+s_{t}+A\left(d_{t}, d_{t-1}\right) \leq R\left(s_{t-1}\right)+Y_{t}+(1-\delta) d_{t-1}$

Household Optimization Problem

Model

$$
\max _{\left\{c_{t}\right\}_{t=0}^{\infty},\left\{d_{t}\right\}_{t=0}^{\infty},\left\{s_{t}\right\}_{t=0}^{\infty}} \mathrm{E} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, d_{t}\right)
$$

s.t. $\quad c_{t}+d_{t}+s_{t}+A\left(d_{t}, d_{t-1}\right) \leq R\left(s_{t-1}\right)+Y_{t}+(1-\delta) d_{t-1}$

$$
U(c, d)=\frac{\left[\left((1-\theta) c^{\frac{\xi-1}{\xi}}+\theta(\bar{d}+d)^{\frac{\xi-1}{\xi}}\right)^{\frac{\xi}{\xi-1}}\right]^{1-\gamma}}{1-\gamma}
$$

Household Optimization Problem

Model

$$
\max _{\left\{c_{t}\right\}_{t=0}^{\infty},\left\{d_{t}\right\}_{t=0}^{\infty},\left\{s_{t}\right\}_{t=0}^{\infty}} \mathrm{E} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, d_{t}\right)
$$

s.t. $\quad c_{t}+d_{t}+s_{t}+A\left(d_{t}, d_{t-1}\right) \leq R\left(s_{t-1}\right)+Y_{t}+(1-\delta) d_{t-1}$

$$
A\left(d_{t}, d_{t-1}\right)= \begin{cases}0 & \text { if } d_{t}=(1-\delta) d_{t-1} \\ F^{d}(1-\delta) d_{t-1} & \text { otherwise }\end{cases}
$$

Household Optimization Problem

Model

$$
\max _{\left\{c_{t}\right\}_{t=0}^{\infty},\left\{d_{t}\right\}_{t=0}^{\infty},\left\{s_{t}\right\}_{t=0}^{\infty}} \mathrm{E} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, d_{t}\right)
$$

s.t. $c_{t}+d_{t}+s_{t}+A\left(d_{t}, d_{t-1}\right) \leq R\left(s_{t-1}\right)+Y_{t}+(1-\delta) d_{t-1}$

$$
Y_{i t}=Z_{t} \cdot P_{i t} \cdot T_{i t}
$$

- Components to income:
- aggregate persistent (Z)
- idiosyncratic persistent (P)
- idiosyncratic transitory (T)

Household Optimization Problem

Model

$$
\max _{\left\{c_{t}\right\}_{t=0}^{\infty},\left\{d_{t}\right\}_{t=0}^{\infty},\left\{s_{t}\right\}_{t=0}^{\infty}} \mathrm{E} \sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}, d_{t}\right)
$$

s.t. $\quad c_{t}+d_{t}+s_{t}+A\left(d_{t}, d_{t-1}\right) \leq R\left(s_{t-1}\right)+Y_{t}+(1-\delta) d_{t-1}$

$$
R\left(s_{t}\right)=\left[1+r\left(s_{t}\right)\right] s_{t}, \text { where } r\left(s_{t}\right)= \begin{cases}r^{\prime} & \text { if } s_{t}>0 \\ r^{b} & \text { if }-\left(\kappa_{y} P_{t}+\kappa_{d} d_{t}\right) \leq s_{t} \leq 0\end{cases}
$$

Parameters of the Environment

Calibration

Parameter		Value
interest rate (lending)	r^{\prime}	0.0016
interest rate (borrowing)	r^{b}	0.02
loan-to-income constraint	κ_{y}	0.56
loan-to-value constraint	κ_{d}	0.8
depreciation rate	δ	0.05
adjustment costs	F^{d}	0.3

Belief and Preference Parameters

Calibration

Parameter		Value
beliefs:		
\quad persistence of P	ρ	0.9831
\quad pessimism	μ	0.9778
preferences:		
\quad discount factor	β	0.9825
risk aversion	γ	1.5
weight of durable goods in utility	θ	0.075
elasticity of substitution in utility	$\underline{\xi}$	3
free durable services	d	0.5

Preferences parameters

Calibration

(a) d, aggregate

(b) s, aggregate

Results

Distribution of durable stock

Results

Figure: Durable stock d by income

(a) first quintile

(b) fifth quintile
observation: durables not much affected by bias

Distribution of liquid savings

Results
Figure: Liquid savings s by income

(a) first quintile

(b) fifth quintile
observation: low income households borrow less
\rightarrow do not borrow even though borrowing constraint not binding!

Propensity to Consume

Results

Figure: MPC out of unexpected transfer (non-durable goods)

Propensity to Consume

Results

Figure: MPC out of unexpected transfer (non-durable goods)

observation: - overall: lower MPC with biased expectations - low income: lower MPC with biased expectations

Propensity to Consume

Results

	model		data	
	biased beliefs	rational beliefs	stimulus 2001 ${ }^{1}$	stimulus 2008^{2}
low/high	1.94	2.86	2.33	1.16

observation: model with rational beliefs overestimates ratio of MPCs (low to high income)
\rightarrow overestimates effectiveness of fiscal stimulus!
${ }^{1}$ Johnson, Parker and Souleles (AER 2006)
${ }^{2}$ Parker, Souleles, Johnson and McClelland (AER 2013)

Alternative Borrowing Constraints

overpersistence bias can explain why households don't borrow more alternative way to avoid large borrowing: tighter borrowing constraints

- benchmark model:

$$
s_{t} \geq-\left(\kappa_{y} P_{t}+\kappa_{v} d_{t}\right)
$$

- alternative:

$$
s_{t} \geq-\underline{s}, \quad \underline{s} \in[0,4]
$$

Alternative Borrowing Constraints

Results
Figure: Liquid savings for different borrowing constraints

observation:

- tightening the borrowing limit increases share with positive assets
- rational agents especially responsive to borrowing limit

Alternative Borrowing Constraints

Results

Figure: Liquid savings for different borrowing constraints

(a) Aggregate MPC

(b) relative MPC
observation: borrowing limit strongly affects MPC!
\rightarrow choice of mechanism that avoids borrowing is not innocuous!

Summary

1) household income expectation in micro data:

- data: Michigan Survey of Consumers
- findings: current income predicts expectation error
- interpretation: households overestimate persistence of income

2) model of durable and non-durable consumption:

- partial equilibrium model, allowing for overpersistence bias
- overpersistence bias: low income households do not want to borrow even though they could
\Rightarrow allows model to fit low end of liquid asset distribution!

3) aggregate implications:

- MPC smaller for low income households
\Rightarrow model with rational expectations overestimates effectiveness of stimulus

Literature

Andolfatto, D., Hendry, S., and Moran, K. (2008). Are inflation expectations rational? Journal of Monetary Economics, 55(2):406-422.
Attanasio, O. P., Goldberg, P. K., and Kyriazidou, E. (2008). Credit constraints in the market for consumer durables: Evidence from micro data on car loans*. International Economic Review, 49(2):401-436.
Berger, D. and Vavra, J. (2015). Consumption dynamics during recessions. Econometrica, 83(1):101-154.
Bordalo, P., Gennaioli, N., and Shleifer, A. (2017). Diagnistic expectations and credit cycles.
Carroll, C. D. (2003). Macroeconomic expectations of households and professional forecasters. The Quarterly Journal of Economics, 118(1):269-298.
Case, K. E., Shiller, R. J., Thompson, A. K., Laibson, D., and Willen, P. (2012). What have they been thinking? homebuyer behavior in hot and cold markets [with comments and discussion]. Brookings Papers on Economic Activity, pages 265-315.
Coibion, O., Gorodnichenko, Y., and Kumar, S. (2015). How do firms form their expectations? new survey evidence.
Das, M. and van Soest, A. (1999). A panel data model for subjective information on household income growth. Journal of Economic Behavior \& Organization, 40(4):409-426.
Dominitz, J. (1998). Earnings expectations, revisions, and realizations. The Review of Economics and Statistics, 80(3):374-388.
Dominitz, J. and Manski, C. (1997). Using expectations data to study subjective income expectations. Journal of the American Statistical Association, 92:855-867.
Gerardi, K., Lehnert, A., Sherlund, S. M., and Willen, P. (2008). Making sense of the subprime crisis. Brookings Papers on Economic Activity, 2008:69-145.
Johnson, D. S., Parker, J. A., and Souleles, N. S. (2006). Household expenditure and the income tax rebates of 2001. American Economic Review, 96(5):1589-1610.
Kaplan, G. and Violante, G. L. (2014). A model of the consumption response to fiscal stimulus payments. Econometrica, 82(4):1199-1239.
Malmendier, U. and Nagel, S. (2015). Learning from inflation experiences*. The Quarterly Journal of Economics.
Parker, J. A., Souleles, N. S., Johnson, D. S., and McClelland, R. (2013). Consumer Spending and the Economic Stimulus Payments of 2008. American Economic Review, 103(6):2530-53.

Piazzesi, M., Salomao, J., and Schneider, M. (2015). Trend and cycle in bond premia.
Piazzesi, M. and Schneider, M. (2009). Momentum traders in the housing market: Survey evidence and a search model. The American Economic Review, 99(2):406-411.
Souleles, N. S. (2004). Expectations, heterogeneous forecast errors, and consumption: Micro evidence from the michigan consumer sentiment surveys. Journal of Money, Credit and Banking, 36(1):39-72.
Storesletten, K., Telmer, C. I., and Yaron, A. (2004). Cyclical Dynamics in Idiosyncratic Labor Market Risk. Journal of Political Economy, 112(3):695-717.

Literature

Household expectations:

- expectations about aggregates:
- inflation: Carroll (2003), Andolfatto et al. (2008), Malmendier and Nagel (2015), Coibion et al. (2015) etc.
- house prices: Gerardi et al. (2008), Piazzesi and Schneider (2009), Case et al. (2012) etc.
- excess bond returns: Piazzesi et al. (2015)
- credit spreads: Bordalo et al. (2017)
- individual income expectations:

Dominitz and Manski (1997), Dominitz (1998), Das and van Soest (1999), Souleles (2004)

Structural models of consumption:

- Kaplan and Violante (2014)
- Berger and Vavra (2015)

Questions about Income Expectations

- income:
- Q1a: During the next 12 months, do you expect your income to be higher or lower than during the past year?
- Q1b: By about what percent do you expect your income to (increase/decrease) during the next 12 months?
- inflation:
- Q2a: During the next 12 months, do you think that prices in general will go up, or go down, or stay where they are now?
- Q2b: By about what percent do you expect prices to go (up/down) on the average, during the next 12 months?

Imputation \& Comparison to PSID

Table: Distribution of reported income changes and imputed values

	mean	p5	p25	p50	p75	p95
directly reported	0.034	-0.378	-0.097	-0.015	0.133	0.572
imputed	0.032	-0.365	-0.103	-0.016	0.130	0.577

Forecast Errors in Real Income Growth

Figure: Mean income growth

(a) expectations

(b) realisations

Forecast Errors in Nominal Income
 Growth

(a) mean nominal error

(b) nominal error by income

Alternative Mechanisms - not consistent with data

- Learning:
not consistent: forecast errors do not improve with age

```
\(\rightarrow\) graph
```

- Extrapolation of Recent Past:
not consistent: income expectations do not extrapolate from recent income growth regession
- Unobservable: Persistent vs Transitory Shocks: not consistent: cannot generate systematic bias based on past shock realizations (Kalman Filtering (also conditionally) optimal and unbiased)
- Systematically Wrong Expectations about Aggregates: not consistent: across income distribution households too pessimistic about aggregates (inflation and unemployment rate)
- Measurement noise quantitatively not strong enough

Forecast Errors By Age

Figure: Forecast errors by age

observation: forecast errors do not improve with age!

Extrapolation of recent Past?

	(1) exp. growth (real)	(2) exp. growth (real)	(3) exp. growth (nominal)	(4) exp. growth (nominal)
past expectation	$0.372^{* * *}$	$0.374^{* * *}$	$0.373^{* * *}$	$0.374^{* * *}$
	(0.016)	(0.016)	(0.016)	(0.016)
past realized growth		$-0.021^{* * *}$		-0.022***
		(0.004)		(0.004)
Income Quintile				
1st	0.004	0.007	0.007	0.009**
	(0.004)	(0.004)	(0.004)	(0.004)
2nd	0.002	0.003	0.004	0.005
	(0.004)	(0.004)	(0.004)	(0.004)
4th	-0.005	-0.006^{*}	-0.005	-0.006^{*}
	(0.004)	(0.004)	(0.003)	(0.003)
5th	-0.008**	-0.010**	-0.008**	-0.010**
	(0.004)	(0.004)	(0.004)	(0.004)
Constant	$0.061^{* * *}$	0.059***	0.070***	0.068***
	(0.022)	(0.022)	(0.022)	(0.021)
Observations	15931	15931	17210	17210
R^{2}	0.185	0.187	0.182	0.184

observation: households do not extrapolate from recent past!

Parametrization

- $r^{\prime}=0.0016$: mean real interest rate on 3 month treasury bills
- $r^{b}=0.02$: credit cards and on auto loans
- κ_{y}, κ_{v} : SCF borrowing limit credit card in 1992-2010, 80% of durables (average financing share at purchase $=0.78$ according to Attanasio et al. (2008))
- $F^{d}, \delta: 30 \%$ lost a new car resell, 10 years lifetime of a car
- $\rho, \sigma_{P}, \sigma_{T}$: Storesletten, Telmer and Yaron (2004)
- Z: NBER recessions vs booms frequencies and average HPf GDP deviation

Definition Liquid Assets

sample: car owners, Survey of Consumer Finances (SCF) 1992-2010
liquid assets:

- checking accounts
- savings accounts
- stocks, bonds, mututal funds, brokerage accounts
- - credit card debt outstanding
- - car loan outstanding

Model Calibrated for Rational Agents

Results

Figure: Liquid savings s by income

(a) aggregate

(b) first quintile
observation: results hold for model calibrated for rational expectations!

[^0]: ${ }^{1} T$: lognormal, $P: \mathrm{AR}(1)$ in logs with normal innovations

